Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The growing interest in the growth and study of thin films of low-dimensional metallic delafossites, with the general formula ABO2, is driven by their potential to exhibit electronic and magnetic characteristics that are not accessible in bulk systems. The layered structure of these compounds introduces unique surface states as well as electronic and structural reconstructions, making the investigation of their surface behavior pivotal to understanding their intrinsic electronic structure. In this work, we study the surface phenomena of epitaxially grown PtCoO2, PdCoO2, and PdCrO2 films, utilizing a combination of molecular-beam epitaxy and angle-resolved photoemission spectroscopy. Through precise control of surface termination and treatment, we discover a pronounced 3×3 surface reconstruction in PtCoO2 films and PdCoO2 films, alongside a 2 × 2 surface reconstruction observed in PdCrO2 films. These reconstructions have not been reported in prior studies of delafossites. Furthermore, our computational investigations demonstrate the BO2 surface’s relative stability compared to the A-terminated surface and the significant reduction in surface energy facilitated by the reconstruction of the A-terminated surface. These experimental and theoretical insights illuminate the complex surface dynamics in metallic delafossites, paving the way for future explorations of their distinctive properties in low-dimensional studies.more » « less
-
The electronic structure of heterointerfaces is a pivotal factor for their device functionality. We use soft x-ray angle-resolved photoelectron spectroscopy to directly measure the momentum-resolved electronic band structures on both sides of the Schottky heterointerface formed by epitaxial films of the superconducting NbN on semiconducting GaN, and determine their momentum-dependent interfacial band offset as well as the band-bending profile. We find, in particular, that the Fermi states in NbN are well separated in energy and momentum from the states in GaN, excluding any notable electronic cross-talk of the superconducting states in NbN to GaN. We support the experimental findings with first-principles calculations for bulk NbN and GaN. The Schottky barrier height obtained from photoemission is corroborated by electronic transport and optical measurements. The momentum-resolved understanding of electronic properties of interfaces elucidated in our work opens up new frontiers for the quantum materials where interfacial states play a defining role.more » « less
-
null (Ed.)The production of hydrogen fuels, via water splitting, is of practical relevance for meeting global energy needs and mitigating the environmental consequences of fossil-fuel-based transportation. Water photoelectrolysis has been proposed as a viable approach for generating hydrogen, provided that stable and inexpensive photocatalysts with conversion efficiencies over 10% can be discovered, synthesized at scale, and successfully deployed (Pinaud et al. , Energy Environ. Sci. , 2013, 6 , 1983). While a number of first-principles studies have focused on the data-driven discovery of photocatalysts, in the absence of systematic experimental validation, the success rate of these predictions may be limited. We address this problem by developing a screening procedure with co-validation between experiment and theory to expedite the synthesis, characterization, and testing of the computationally predicted, most desirable materials. Starting with 70 150 compounds in the Materials Project database, the proposed protocol yielded 71 candidate photocatalysts, 11 of which were synthesized as single-phase materials. Experiments confirmed hydrogen generation and favorable band alignment for 6 of the 11 compounds, with the most promising ones belonging to the families of alkali and alkaline-earth indates and orthoplumbates. This study shows the accuracy of a nonempirical, Hubbard-corrected density-functional theory method to predict band gaps and band offsets at a fraction of the computational cost of hybrid functionals, and outlines an effective strategy to identify photocatalysts for solar hydrogen generation.more » « less
An official website of the United States government
